8 research outputs found

    Optimization of a small passive wind turbine generator with multiobjective genetic algorithms

    Get PDF
    In this paper Multiobjective Genetic Algorithms (MOGAs) are used for the design of a small wind turbine generator (WTG) coupled to a DC bus through a diode bridge. The originality of the considered system resides in the suppression of the Maximum Power Point Tracker (MPPT). The poor efficiency of the corresponding passive structure is considerably improved by optimizing the generator characteristics associated with the wind turbine in relation to the wind cycle. The optimized configurations are capable of matching very closely the behavior of active wind turbine systems which operate at optimal wind powers by using a MPPT control device

    Model simplification and optimization of a passive wind turbine generator

    Get PDF
    In this paper, the design of a "low cost full passive structure" of wind turbine system without active electronic part (power and control) is investigated. The efficiency of such device can be obtained only if the design parameters are mutually adapted through an optimization design approach. For this purpose, sizing and simulating models are developed to characterize the behavior and the efficiency of the wind turbine system. A model simplification approach is presented, allowing the reduction of computational times and the investigation of multiple Pareto-optimal solutions with a multiobjective genetic algorithm. Results show that the optimized wind turbine configurations are capable of matching very closely the behavior of active wind turbine systems which operate at optimal wind powers by using a MPPT control device

    Optimization of a small passive wind turbine based on mixed Weibull-turbulence statistics of wind

    Get PDF
    A "low cost full passive structure" of wind turbine system is proposed. The efficiency of such device can be obtained only if the design parameters are mutually adapted through an optimization design approach. An original wind profile generation process mixing Weibull and turbulence statistics is presented. The optimization results are compared with those obtained from a particular but typical time cycle of wind speed

    Optimisation multicritère d'une chaîne éolienne passive

    Get PDF
    In this thesis, Multiobjective Genetic Algorithms have been applied to the design of a small passive Wind Turbine Generator (WTG). Results show that the optimized configurations of the full passive wind turbine are able to match very closely the behaviour of active wind turbine operating at optimal wind powers by using a MPPT control device. Four simulation models with different granularity and accuracy have been developed: an instantaneous global model for the system analysis and three simplified equivalent DC models that can be implemented in an optimization process because of the CPU time cost reduction. Finally, the robustness of this passive WTG has been analyzed in relation to wind variations by using an original wind model based on statistical data.Dans cette thèse une optimisation multicritère par algorithme génétique d'une chaîne éolienne de petite puissance entièrement passive (sans MPPT) a été réalisée. Le rendement de cette structure est largement amélioré par l'optimisation des caractéristiques de la génératrice. Pour un cycle de vent donné, les configurations passives optimisées sont capables d'extraire une énergie comparable à celle obtenue avec des architectures actives utilisant un dispositif MPPT. Nous avons développé quatre niveaux de modèles de comportement de la chaîne éolienne : un modèle instantané "modèle fin" pour l'analyse du système et trois modèles simplifiés pouvant être intégrés dans un processus d'optimisation en raison de la réduction du coût de calcul. Enfin, la robustesse de cette structure passive vis-à-vis des variations de vent a été analysée en exploitant un modèle de vent original basé sur des données statistiques

    Optimisation multicritère d'une chaîne éolienne passive

    No full text
    Dans cette thèse une optimisation multicritère par algorithme génétique d'une chaîne éolienne de petite puissance entièrement passive (sans MPPT) a été réalisée. Le rendement de cette structure est largement amélioré par l'optimisation des caractéristiques de la génératrice. Pour un cycle de vent donné, les configurations passives optimisées sont capables d extraire une énergie comparable à celle obtenue avec des architectures actives utilisant un dispositif MPPT. Nous avons développé quatre niveaux de modèles de comportement de la chaîne éolienne : un modèle instantané "modèle fin" pour l'analyse du système et trois modèles simplifiés pouvant être intégrés dans un processus d'optimisation en raison de la réduction du coût de calcul. Enfin, la robustesse de cette structure passive vis-à-vis des variations de vent a été analysée en exploitant un modèle de vent original basé sur des données statistiques.In this thesis, Multiobjective Genetic Algorithms have been applied to the design of a small passive Wind Turbine Generator (WTG). Results show that the optimized configurations of the full passive wind turbine are able to match very closely the behaviour of active wind turbine operating at optimal wind powers by using a MPPT control device. Four simulation models with different granularity and accuracy have been developed: an instantaneous global model for the system analysis and three simplified equivalent DC models that can be implemented in an optimization process because of the CPU time cost reduction. Finally, the robustness of this passive WTG has been analyzed in relation to wind variations by using an original wind model based on statistical data.TOULOUSE-INP (315552154) / SudocSudocFranceF

    Power density improvement of axial flux permanent magnet synchronous motor by using different magnetic materials

    No full text
    Purpose The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency and the power density of the selected motor. Design/methodology/approach This paper presents a study to improve the power density and efficiency of e-motors for electric traction applications with high operating speed. The studied machine is a yokeless-stator axial flux permanent magnet synchronous motor with a dual rotor. The methodology consists in using different magnetic materials for an optimal design of the stator and rotor magnetic circuits to improve the motor performance. The candidate magnetic materials, adapted to the constraints of e-mobility, are made of thin laminations of Si-Fe nonoriented grain electrical steel, Si-Fe grain-oriented electrical steel (GOES) and iron-cobalt Permendur electrical steel (Co-Fe). Findings The mixed GOES-Co-Fe structure allows to reach 10 kW/kg in rated power density and a high efficiency in city driving conditions. This structure allows to make the powertrain less energy consuming in the battery electric vehicles and to reduce CO 2 emissions in hybrid electric vehicles. Originality/value The originality of this study lies in the improvement of both power density and efficiency of the electric motor in automotive application by using different magnetic materials through a multiobjective optimization
    corecore